Cancer occurs when human cells move and multiply inappropriately. Within cells, a process called phosphorylation serves as an on/off switch for a number of cellular processes that can be involved in cancer, including metabolism, transcription, configuration, movement, cell death and differentiation. This process is controlled by a group of enzymes called protein kinases that – working together and separately – modify the structure of proteins, changing them and allowing them to control cellular processes.
One of the challenges to understanding the actions and interactions of kinases within cells has been that the mechanisms scientists used to control the enzymes were not specific, often affecting more than one pathway within the cell.
In a paper published today in the journal Nature Biotechnology, Klaus Hahn, PhD, who is the Thurman Professor of Pharmacology at the University of North Carolina at Chapel Hill and a member of UNC Lineberger Comprehensive Cancer Center, describes a new technique called engineered allosteric regulation, which provides a new tool for scientists who study the interactions of proteins within living cells.
For the full news release, see http://www.unchealthcare.org/site/newsroom/news/2010/June/hahn-nature-biotechnology.